IPD/BIM THESIS TECH I: STRUCTURAL 10/06/2010

> Paul Kuehnel Stephen Pfund Stephen Kijak

SUMMARY

- Introduction
- Structural System Overview
 - Floor Plans
 - Frame Elevations
- Lateral System
- Specialty Systems
- Lateral Loads
- Spot Checks
- IPD/BIM
- Tech II

CANTILEVER RENDERING

Image taken from OPP website: http://www.opp.psu.edu/planning-construction/projects/Millennium_Science_Complex

SOUTH EAST PERSPECTIVE

BUILDING LEVELS

FOUNDATION

BASEMENT

BASEMENT

FIRST FLOOR

FIRST FLOOR

SECOND FLOOR

COMPOSITE DECKS

THIRD FLOOR

MECHANICAL PENTHOUSE

ROOF

LATERAL SYSTEM & SPECIAL SYSTEMS

Frame – A (Looking East)

Frame – B (Looking East)

Frame – B (Looking East)

•	2 23	3	5	(B))	(7)			1	(12)	(1)	14	(16)	(8)	1	(18)	(19)	(20)	(21)
							_		2			_	_272	12				
	_		<u> </u>						_	_			_					
									-	_	╞				_			
T T				Ť	-	-	1		•								Τ	

Frame – C (Looking East)

Frame – D (Looking East)

Frame – E (Looking East)

· · · · · · · · · · · · · · · · · · ·	® () ()	 • • •	۲
		 122	

Frame – F (Looking East)

Frame – K (Looking East)

WIND/SEISMIC NOTES

- Reported From Structural Drawings
- Wind:
 - Exposure Category: B
 - Basic Wind Speed: 90mph
 - Importance Factor: 1.15
- Seismic:
 - Importance Factor: 1.25
 - Mapped Spectral Response Accelerations (different than USGS)
 - Ss = 0.181 g (0.147 g, USGS)
 - Sds = 0.096 g (0.049 g, USGS)
 - Design Category: B
 - LFRS: Ordinary Concentric Braced Frame
 - R = 3.25
 - Analysis: Equivalent Lateral Force Analysis

WIND/SEISMIC LOAD DISTRIBUTION

GRAVITY LOADS

- Design loads used by Thornton Tomasetti checked against the following sources:
 - ASCE7-05
 - IBC 2006
 - United Steel Deck design guide
- All loads used found to be correct or conservative
- Ground Snow Load and Snow Importance Factor
 - Pending confirmation from UCC and roof R values

SPOT CHECKS

EXISTING MODEL

EXISTING MODEL

• Connection Issues

IPD/BIM STRUCTURAL PROCESS

IPD/BIM STRUCTURAL PROCESS

QUESTIONS?

Frame – G (Looking East)

Frame – H (Looking East)

Frame – J (Looking East)

Frame – L (Looking East)

Frame – M (Looking East)

Frame – N (Looking East)

Frame – P (Looking East)

Frame – Q (Looking East)

Frame – R (Looking East)

Frame – S (Looking East)

Frame – T (Looking East)

Frame – U (Looking East)

Frame – V (Looking East)

3

1

(2)

(5)

(4)

6

Frame – W (Looking East)

Frame – X (Looking East)

Frame – Y (Looking East)

Frame – Z (Looking East)

Frame – Z (Looking East)

Frame – Z (Looking East)

Frame – 1 (Looking South)

Frame – 2 (Looking South)

Frame – 3 (Looking South)

Frame – 4 (Looking South)

Frame – 5 (Looking South)

Frame – 6 (Looking South)

Frame – 7 (Looking South)

D

C

J

H

G

Frame – 8 (Looking South)

Frame – 9 (Looking South)

Frame – 10 (Looking South)

B

(F)

(E)

0

(c)

Frame – 11 (Looking South)

Frame – 12 (Looking South)

Frame – 13 (Looking South)

Frame – 14 (Looking South)

F

E

D

C

B

A

Frame – 15 (Looking South)

Frame – 16 (Looking South)

Frame – 17 (Looking South)

Frame – 18 (Looking South)

Frame – 19 (Looking South)

Frame – 20 (Looking South)
GRAVITY LOADS

Floor Loading Schedule											
			Slab Type		Loads						
Floor	Elevation (ft-in.)	Occupancy		Slab (PSF)	SDL (PSF)	LL (PSF)	ASCE7-05 LL	USD* - DL			
Level Roof	1245'-6"	Roof	S1	50	25	30	30	48.8			
Mechanical Penthouse	1226'-0"	Mechanical	S2	110	25	150	-	106			
		Green Roof	S3	76	120	30	-	75.8			
		Office	S1	50	30	50	50	48.8			
	40001.01	Material Science Labs	S1	50	30	150	-	48.8			
i nira Fioor	1208-0"	Life Science Labs	S1	50	30	150	-	48.8			
		Corridors	S1	50	30	Area Served	Area Served	48.8			
		Elevator Lobbies	S1	50	30	100	100	48.8			
	1190-0"	Green Roof	S3	76	120	30	-	75.8			
		Office	S1	50	30	50	50	48.8			
Second Elser		Material Science Labs	S1	50	30	150	-	48.8			
Secona Floor		Life Science Labs	S1	50	30	100	-	48.8			
		Corridors	S1	50	30	Area Served	Area Served	48.8			
		Elevator Lobbies	S1	50	30	100	100	48.8			
	1170-0"	Plaza Landscape	S2	110	300	100	100	106			
		Office	S1	50	30	50	50	48.8			
		Material Science Labs	S1	50	30	150	-	48.8			
First Floor		Life Science Labs	S1	50	30	100	-	48.8			
		Corridors	S1	50	30	100	100	48.8			
		Mechanical Mezzanine	Grating	10	10	150	-	-			
		Elevator Lobbies	S1	50	30	100	100	48.8			
Basement Mezzanine	1160'-0"	Retail	S1	50	30	50	-	48.8			

SNOW LOADS

	Snow Loads			Loading	Applicable Standard		
Ground Snow					pending	ASCE7-	
Load	p _g	40	psf	30	confirmation	05	Fig 7-1
Snow Exposure	J. J					ASCE7-	
Factor	C _e	0.9		0.9	Exp. B	05	6.5.6.2
Snow							
Importance					pending	ASCE7-	Table
Factor	1	1.1		1.1	confirmation	05	7-4
						ASCE7-	Table
Thermal Factor	C _t	1		1		05	7-3
Flat Roof Snow							
Load	$p_f = 0.7C_eC_t lp_g$	28	psf	20.8			
Snow Drifts	Ŭ	Based	on Sect. 1	608.7 as applicable			

WIND LOADS

Windward Wall Pressures				
	P = qGCp	+ qi(Gcpi)	P = qGCp	- qi(Gcpi)
Height	Pressur	e 1 (psf)	Pressur	e 2 (psf)
z= 15ft	11.39		4.46	
z= 20ft	12.07		5.14	
z= 39ft	13.87		6.94	
z= 57ft	15.06		8.14	
z= 75.75ft	16.05		9.12	
z= 87ft	16.55		9.62	

Parapets(Windward)					
Heights	qp	GCpn	Pp= qp	oGCpn	
z= 33ft	13.87	1.5	20.	.81	
z= 51ft	15.06	1.5	22.	.60	
z= 69ft	16.05	1.5	24.	.07	
z= 87ft	16.55	1.5	24.	.83	
Leeward Walls					
	Pressur	e 1 (psf)	Pressure	e 2 (psf)	
Wind- short side	0.	19	-6.	74	
Wind-Long Side	-4.	72	-11.65		

Final Story Forces						
	Load		Shear		Moment	
Floor Level	E/W(K)	N/S(K)	E/W(K)	N/S(K)	E/W(K-ft)	N/S(K-ft)
First Floor	140.24	185.22	763.68	874.70	1402.381	1852.21
Second Floor	204.54	254.70	623.44	689.47	6136.109	7640.975
Third Floor	194.15	199.12	418.90	434.77	9319.04	9557.669
Mech. Pent.	151.16	156.45	224.76	235.66	9976.463	10325.96
Roof	73.60	79.20	73.60	79.20	6292.719	6771.838
		Totals*(1.6)	1221.887	1399.512	53002.74	57837.85

SEISMIC LOADS

Design Seismic Base Shear- MSC Complex, University Park, PA			Lateral Force R	esisting Sy	stem: Ordinary	Steel Conce	entrically Brad	ced Frames				
						R=	3.2	5				
Latitude:	40.802		Site Class: D)		=	1.2	5				
Longitude:	-77.86		Occ. Cat: III			SDC:	E	3 (No Limitation	าร)			
						TI=		6 s (Fig. 22-15)				
Ss =	0.147	g (Site Class I	B)			Ta=	0.51	2s				
S1=	0.049	g (Site Class I	B)			Cu=	1.1	7				
						Cu*Ta=	0.87	1 s				
Fa=	1.6					Cs=	Min	0.0603				
Fv=	2.4					00		0.0346				
								0.2386				
S _{MS} =	0.2352	g	S _{DS} =	0.1568	g			0.2000				
S _{M1} =	0.1176	g	S _{D1} =	0.0784	g							

V=	CS*W	
Cs=	0.0346	
W=	50120.12	K
V=	1735.46	K

SEISMIC LOAD DISTRIBUTION

i (Level)	Story Height h _i (ft)	Effective Height h (ft)	Story Weight w (K)	w*h ^k	C _{VX}	Lateral Force f _i (K)	Story Shear V _i (K)	Mi (K-ft)
Roof	19.5	75.5	4165.67	701200	0.246	429.17	429	32402.14
Mech.	18.0	56.0	9738.01	1150294	0.404	704.03	1133	39425.91
3	18.0	38.0	9227.25	688304	0.242	421.27	1554	16008.44
2	20.0	20.0	8774.75	305846	0.107	187.19	1742	3743.844
Totals	75.5	75.5	31905.68	2845644	1.000	1741.67	1742	91580